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Motivation:

- Cable harvesses are present on most space struetures
- Space struetures have decreased v weight
- Cables have wot decreased v wel 3kt

THUS: Cable mass as a percentage of
total space structure mass has increased

>

- As high as 30% iV some cases
- 10% tjfiml
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Motivation:

- Cables were previously modeled as lumped mass
- Cables actually act as stroctural mass

- Cable damping is poorly understood as of yet
- Shear effects are siguificant  °

ot
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- Cables attached to structures =
cwge the ér_LjAJAMIQS \;&4 ,

Cabled Beam
]

freq (Hz)

THUS: Cables should be modeled as structural
elements with shear effects and damping, but
more research is needed to fully understand
the damping mechanisms present
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Motivation:
- Structure anvd mass affect the Ajup.mic response of 4 system

- Koowledge of structural dyvamics is important for space
structure control and system Lailure calevlations

- \D_'.jm,mic. testivg must often be completed before the structure
is fully dressed with cables

- There is Dot yet A relisble predictive cable model for
iNeorporation ivte structural models

THUS: An accurate damped structural cable
model is necessary for accurate control and

analysis of space structures!
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Space Flight Cables

- M2ISO0-26T6G2T4 wire used
(26 AWG twisted pairs with tivved
copper EMI shielding and Tefzel
SETFES Jjacket)

-1 by 18 v 2 layers over a core wire
- Helically twisted

- Tie laced every 4-6'

- Kapton overwrap
- _I:Ljfsiu.l space ﬂigkt cable
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Test Procedures

Cable was attached to
test fixture. Laser
vibrometer measured
response to shaker
exciltation.

"Standard Run”

- Cable attached to test fixture with coil plave toward shaker
- T_LjRo.f TTSZSM cable ties with setting S (tight) on cable tie quu
- Static displacement of cable due to string less thaw | mm

- White Noise (random) excitation at 0.3 volts, O-2000 Hz
- Respouse measured at driving poivt by laser vibrometer

- \brivi».kj point at B.S em above lower tie

- 2 lbs (B8 N cable tewsion

- Excitation actuated lo_c.j tevsioved 24 em strivg
- Cow pass S kHz filter

- Frequeney of ivterest O - 250 Hz

- Test section length of 254 em with
two 20.23 em buffer zoves above
ad below







Excitation Method

Hammer impact, white noise, and burst random
excitation methods were compared.

Looking for validation that the test fixture was
not overly influencing the cable response.

Comparison of Excitalion Methods, Section A H1x18, 24 AND 35

——— White Noise
ER Tiig

——— Hammes with Load Cell

——— Hammer Without Load Cell 7

[@VirginiaTech

Hammer impacts bounded the white
noise and burst random responses.
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Excitation String
Length and Tension

Cable fixture was moved to 4, 10, 17, 24 and
45 cm to vary string length. DC offset on
shaker was also adjusted to provide tension
variation in the excitation string. Cable
was statically deflected less than 1 mm.

Neither string length nor tension
affected the dynamic response.
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Cable Tension

Cable tension was varied, from slack to 4 lbs. A
hand-tight case was also tested, where the cable
was simply pulled tight and attached similar to
common installation methods.

Cable frequency increased with
increasing tension; a hand-pulled

cable showed similar results; slack
cable had significant differences.
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Cable Tie Attachment

Cable tie attachments were varied in both
tightness of cable tie as measured by a cable
tie gun, and type and size of cable tie.

ey b1

Tight cable ties behaved similarly,
regardless of type; loose cable ties
had greater variation from
test to test.
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Cable Orientation

After noticing that cables had distinctly bi-
modal first frequencies, cable orientation in
the test fixture was investigated.

Natural frequency changed as coil plane
was rotated; rotation of cable
orientation shifts the first natural
frequency in a roughly sinusoidal
pattern.
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Cable Section Comparison

A length of 1 by 18 cable was cut into five
similar sections, and standard runs of the
sections were compared.

Variation 1n cable sections 1s significant!
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Conclusions:

- Things that matter:
Cable tewsion, cable orientation, cable section, zip tie tightvess

- Tkiuas that don't:
Excitation method, excitation strivg length and tewsion®,
zip tie type

- THUgs to ke.eP stuéj503:
bhﬁnping , sectional and standard vuw variations
Comsideration of a statistical approach for beam parameters

As well as expanding the availability of
experimental cable data, a few of the factors
that must be controlled for repeatable vibration
testing have been identified.

From this work, further progress has been made
to investigate the damping of structures due to
cable wiring harnesses.

* Excitation string tewsion must Not deflect the cable more thaw | mm
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