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MOTIVATION

Space scrwctres of ll Types reulre perwur

- Increase in signal and power needs, requiring cables

Effects of Bakeout on !
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Cables are now making up a greater pereemtags of the it
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sre mass than in heritage systems

Cable mass percentage is 10% at a rypical NASA center, liverature cres 4-30%
Marerial stience advances result in high strength-to-weight-rario materials
Cable materials remain unchanged

Mars Rover Curiosity
weighed 7,275 pounds
during EDL, and has
A0 porinde of cables
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Cables must be included in models of space structures
- Calbes change structure behavior | | |
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- Testing of space structures is ofien
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Accurate prediction of stracvaral dynamies,
imeluding the impact of cable harnesses, i of
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Space structures of all types require power and signal cables




Cables are now making up a greater percentage of the total
structure mass than in heritage systems

Cable mass percentage is 10% at a typical NASA center, literature cites 4-30%

- Material science advances result in high strength-to-weight-ratio materials
- Cable materials remain unchanged

- Increase in signal and power needs, requiring cables

g
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4
.

Mars Rover Curiosity

weighed 7,275 pounds
\; during EDL, and has

S 400 pounds of cables

(5.5% cable mass)




Cables must be included in models of space structures

- Cables change structure behavior

- Knowledge of structure behavior is
necessary for evaluation of failure risk and
control system development

- Testing of space structures is often

performed before cabling is completed

"Accurate prediction of structural dynamics,
including the impact of cable harnesses, is of
interest to the military space community as it
reduces program risk, allows more realistic
requirements on vibration mitigation systems

and assures that mission performance metrics
can be met." -AFRL




Cables must be modeled as structural mass with bending stiffness

- Cables were originally modeled as
strings

- Space flight cables were
traditionally modeled as lumped
mass

- Literature review and industry
findings show that lumped mass
models and string models are no
longer sufficiently accurate for

dynamic behavior prediction

- No predictive model yet exists; in
addition, cable research from AFRL
and other sources do not consider
bakeout effects

Lump o’ cable mass

Interior cables
modeled atCG

distributed throughout

REALITY MODEL

Determination of cable
bending stiffness is
necessary; bakeout may
change cable stiffness
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BENDING STIFFNESS

Cahle bending sriffess depends on:
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BAKEOUT

A thermal and vacuum treatment intended to expedite
outgassing of volatile materials for cleansing purposes
Low Earth Orbit Bakeout:
72 howrs at 105 € +/- 5C at pressure of less than 10°-5 tore

Cmyping Terms
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EXPERIMENTAL PROCEDURE

Several cables were tested to observe the overall dynamic behavior and develop the test set up. Cables were excited with a modal shaker
and the dynamic response was measured with a laser vibrometer at the driving point. Factors affecting the cable response were

investigated and a standard run was developed to ensure future cable tests will be comparable,

Cable type chosen
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CABLE CONSTRUCTION

CORE - SINGLE HELIX WIRES Characteristics to consider:
= _ - Core and layer wire materials
- Number of wires
- Type and thickness of
insulation and shielding
- Lay geometry

STRAND
- Lay angle and direction

DOUBLE HELIX WIRES - Ties and OVerwrapping

7 x 19 Cable




- CABLE MODELING

Cables can be modeled as a homogeneous beam with damping terms included (Castello & Matt, 2011)

rho: Density
Cable properties Beam properties A: Cross-sectional area
Number of wires G: Modulus of rlgldlty
Number of layers p, A, E, I’ G .
S Damping Terms
Wire material
Bending Stiffness:

l
(+ DAMPING TERMS!) E: Modulus of elasticity

I: Area moment of inertia




BENDING STIFFNESS

Cable bending stiffness depends on:

- The moduli of elasticity of the cable

Bending Stiffness

constitutive materials and the
proportions thereof

- The curvature of the cable Curvature

(experiments must be limited to small —— \ | i
No Slip Transition Full Slip

V¥

displacement to yield a single EI value)
"Results demonstrate that the variation of

- Cable shape, layout and arrangement cable flexural rigidity with curvature is

(moment of inertia) tantamount to damping without use of a
damping term in the cable equation of

- Any treatments that affect any of the motion." (Knapp & Liu, 2005)

above... such as bakeout No damping term required if EI(x,¢)

is used; however, El_max and EI_min
can be orders of magnitude apart and
difficult to determine.




BAKEOUT

A thermal and vacuum treatment intended to expedite

outgassing of volatile materials for cleansing purposes

Low Earth Orbit Bakeout:
72 hours at 105 C +/- 5C at pressure of less than 10"-5 torr

"

——

ables On Bakeout Rack

Bakeout Chamber

Temperature Record




UDJECTIVED

Thus, because cables make up a significant portion of space structures and affect the
structural dynamics, determining the bending stiffness of space flight cables is
necessary. Since bending stiffness may be affected by the bakeout procedure, the
objectives of this study are to:

- Determine whether space flight cable stiffness is indeed
affected by bakeout, as evidenced by changes in dynamic
response

- Observe the effects of bakeout on space flight cables and
compare the cables pre- and post-bakeout

- Quantify the dynamic response eftects of low Earth orbit
bakeout on a variety of cable geometries by determining the
changes in natural frequency and/or damping
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—EXPERlMENTAL PROCEDURE TEST SETUP DETAILS ey

Several cables were tested to ehserve the overall dynamic behavior and develop the test setap, Cables were excived with o modal shaker
and the dynamic response was measured with 3 liser vibrometer at the driving print, Fasors affecting the cable response were
investigated and a standard run was developed to ensure future cable tests will be comparable.
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Test fixture designed

. " \
x -h--_.n |

M U " Buffer section-

tightly pinned at
Suspended shaker top and bottom
with tensioned wire

to load cell on cable

Test section,
10" with targets
every half inch
and target on

DP

Buffer section, 8”




STANDARD RUN Standard run developed

- Cable attached to test fixture with coil plane toward shaker

- TyRap TY525M cable ties with setting 5 on cable tie gun o7}
- Static displacement of cable due to string less than 1 mm  os/
- White noise (random) excitation at 0.3 volts, 0-2000 Hz ~ os! -
. . . g | Cable Section A,

- Response measured at driving point by laser vibrometer o4/ |

. . . E 14 Standard Runs
- Driving point at 8.5 cm above lower tie § oal || |
- 2 1bs (8.9 N) cable tension 02| I
- Excitation actuated by tensioned 24 cm string 0a] | _
- Low pass 5 kHz filter ok L - =

Frequency [Hz]

- Frequency of interest 0 - 250 Hz
- Test section length of 25.4 cm with two 20.3 cm buffer

zones above and below




Machine-produced cables ordered and tested

1x7, 1x19, 1x48 and 7x7 contra-helical
configurations of M27500-26TG2T 14 wire
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Most reliable cables determined and
baked out at 105C, 1E-5 torr for 72 hours,
then re-tested




Results compared:

Mode shapes, natural frequencies, damping values
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Baked out cables show decrease in natural
frequency and increase in damping.

LASER SCANS ME SCOPE
1x7 First Frequency [Hz] | First Frequency [Hz] % Damping
Unbaked 41.25 413 3.459
Baked 38.44 38.5 4.25
1x19
Unbaked 68.44 68.3 4.65
Baked 57.5 57.4 5.5
1x48
Unbaked 118.1 118 4.6
Baked 107.8 108 6.87
7x7
Unbaked 81.88 86.5 8.45
Baked 64.06 65.3 9.35

% Difference | % Difference

Scan Scope
1x7 7.05 7.02
1x19 17.37 17.34
1x48 9.12 8.85
7x7 24.42 27.93




NCLUSIONS, CONTRIBUTIONS, AND FUTURE W(Q

- No literature exists on the effect of bakeout treatment on cable stiffness;
this work provides concrete data that bakeout does indeed change the dynamic response of space flight cables
- After a low Earth orbit bakeout, the first and second natural frequencies decreased for all cables between 7 and 28%
- After a low Earth orbit bakeout, damping values increased for all single-strand cables
[t is clear that this combination of wire type and bakeout results in a significant reduction in bending stiffness.

- Current cable frequency data refers to unbaked cables, which may have a higher frequency than flight-ready cables;
spacecraft designers should keep this in mind if using currently published data

Future work:

- Different bakeout treatments may have different results

- Different wire coating may have different results; the presence of plasticizers that would outgas would likely cause stiffening after bakeout
- More extensive chemical research could be done to identify the softening mechanisms due to bakeout treatment
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